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An enigmatic, c. 2 km-long and 15 m-high travertine ridge, the Colle Fiorito ridge, occurs in the northwestern
sector of the Tivoli travertine plateau, central Italy. The main questions addressed in this paper concern the
origin and mode of growth of this prominent ridge. The presence of active structures beneath the studied
ridge is inferred by recent and past earthquakes located at shallow depths immediately beneath Colle Fiorito.
To understand the surficial structure of the Colle Fiorito ridge and the travertine depositional environment,
we constructed a 10 m-resolution DEM, analyzed recent and past aerial photographs, and conducted field
surveys and meso- to micro-scale sedimentological analyses. To understand the ridge subsurface structure,
we studied a set of 32 stratigraphic well logs available from previous works and from the local decorative
stone industry, and realized a 2D electrical resistivity tomography (ERT) across the ridge. Results show a gen-
tle antiformal structure affected by subvertical zones of strata discontinuity. The Colle Fiorito structure is
interpreted as a previously-unknown fissure ridge travertine grown at the edge of the Tivoli travertine pla-
teau, perhaps when the volumetric deposition rate reached its climax in the plateau for the abundance of
fluid discharge and the rise of the water table. Such a fluid pressure may have activated the faults and frac-
tures beneath Colle Fiorito, thus opening new pathways for the ascension of geothermal fluids toward the
surface.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Thermal (or thermogene sensu Pentecost, 1995) travertines are
chemical deposits of CaCO3 precipitated in geothermally-active areas
usually around or along geothermal springs and open fissures (Bargar,
1978; Crossey et al., 2006), forming deposit morphologies as different
as cascades, apron and channel travertines, fissure ridges, plateaus,
and towers (e.g., Scholl and Taft, 1964; Buccino et al., 1978; Chafetz
and Folk, 1984; Goff and Shevenell, 1987; Altunel and Hancock,
1993a, b; Benson, 1994; Pentecost, 1995, 2005; Traganos et al., 1995;
Ford and Pedley, 1996; Buchardt et al., 1997; Guo and Riding, 1998,
1999; Atabey, 2002; Chafetz and Guidry, 2003; Crossey et al., 2006;
Faccenna et al., 2008; Zentmyer et al., 2008; Pedley, 2009; Pedley and
Rogerson, 2010; Fouke, 2011). Thermal travertine deposits are known
worldwide and have been studied for their numerous insights into
paleoenvironment, paleoclimate, neotectonics, geothermics, and sever-
al other scientific disciplines and industrial applications such as the
niversità Roma Tre, Largo S.L.
; fax: +39 06 5733.8201.
lippis).
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industry of decorative stones (e.g., Rihs et al., 2000; Brogi and
Capezzuoli, 2009; Brogi et al., 2010; Capezzuoli et al., 2010; Crossey
and Karlstrom, 2012; De Filippis et al., 2012; Gratier et al., 2012; Van
Noten et al., 2013). The formation of thermogene travertines is
connectedwith the existence of a geothermal circuit of aggressive fluids,
which, after interacting with carbonate rocks in the substratum, ascend
toward the surfacewhere they releasemost of their calciumbicarbonate
content in the formof travertine deposit. The conduits that allow the cal-
cium bicarbonate-rich fluids to ascend toward the surface are one of the
main scientific targets for geologists working on travertines and, in gen-
eral, on geofluids. The fluids that are at the origin of travertine deposits
are, in fact, highly-mineralizing (calcium bicarbonate-rich) and should
therefore rapidly obstruct at least the shallowest part of the conduit,
thus theoretically hindering the formation of large and long-lived trav-
ertine deposits. Contrary to this concept, the longevity of several traver-
tine deposits is known to be on the order of 104 years and their volume
may be up to 1 km3 (Uysal et al., 2007; Faccenna et al., 2008; De Filippis
et al., 2012; Kampmanet al., 2012). It follows that dilationalmechanisms
connectedwith tectonics, fluid pressure (usually modulated by the fluid
supply and paleoclimate oscillations), or other factors must be invoked
to keep the feeding conduits pervious to highly-mineralizing fluids for
tens of thousands of years (Hancock et al., 1999; Rihs et al., 2000;
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Anderson and Fairley, 2008; Faccenna et al., 2008; Brogi and Capezzuoli,
2009; Uysal et al., 2009; Zampieri et al., 2009, 2010; Brogi et al., 2012; De
Filippis and Billi, 2012). Knowing and studying the conduits through
which geothermal travertines have been fed may therefore provide in-
sights into the geothermal circulation and into the mechanisms that
make this circulation efficient.

One interesting case of long-lived thermogene travertine is the
middle to late Pleistocene deposit filling the Acque Albule basin (Tiv-
oli; Fig. 1) close to Rome, central Italy (Maxia, 1950b; Chafetz and
Folk, 1984; Pentecost and Tortora, 1989; Pentecost, 1995; Faccenna
et al., 2008, 2010; De Filippis et al., in press). This travertine consti-
tutes one of the largest known travertine deposits (plateau) of Qua-
ternary age in the world. Whereas in several other travertine
deposits, the shallowest part of the feeding conduit is known from
the occurrence, for instance, of subvertical open fissures partly miner-
alized by subvertical bands of sparry travertine (banded travertine;
Bargar, 1978; Uysal et al., 2007; De Filippis et al., 2012), in the case
of the Tivoli travertine plateau such evidence is probably buried be-
neath the travertine itself. Moreover, in several other travertine de-
posits, the surface expression of the feeding conduits is marked by a
prominent vertical growth of the deposits (see for instance the fissure
ridge travertines and the travertine towers; Bargar, 1978; Buchardt et
al., 2001; Ludwig et al., 2006; De Filippis and Billi, 2012), whereas the
Tivoli travertine is characterized by a substantially flat upper surface
(Fig. 1). One viable hypothesis for the feeding conduit of the Tivoli
travertine is that the geothermal fluids ascended along a central con-
duit controlled by an active strike–slip to transtensional fault system
(Fig. 1). Along this fault system, in fact, the thickness of the travertine
deposit is considerably larger (at depth) than that aside from the fault
system (see cross-sections in Fig. 1) and a series of fossil and active
geothermal springs and vents align on top of the fault system
(Faccenna et al., 2008, 2010). Nevertheless, to the northwest of the
Tivoli flat travertine plateau, a ridge of bedded travertine occurs in
the Colle Fiorito area (Fig. 1). The Colle Fiorito ridge, which is the
unique prominent structure over the flat travertine plateau, is an
elongated and curved travertine mound about 15 m high, 2000 m
long (i.e., the long axis in map view), and 400–500 m wide (i.e., the
short axis). The ridge is intriguing because recent earthquakes oc-
curred right below the ridge (Gasparini et al., 2002) and, on its top,
evidence of recently-active degassing structures such as small vents
was signaled already several years ago (Maxia, 1950b).

In this paper, we study the Colle Fiorito ridge in the Acque Albule
basin (Fig. 1) with a multidisciplinary (geomorphological, geological–
sedimentological, and geophysical) approach to understand its prom-
inent morphology over the flat Tivoli plateau and to contribute to the
comprehension of whether this prominent structure is the surface ex-
pression of a travertine-feeding conduit (similar to fissure ridges; e.g.,
Brogi and Capezzuoli, 2009; De Filippis et al., 2012) or whether it is
the result of a different mechanism. The occurrence of recent earth-
quakes below this structure and gas vents on its summit make the
Colle Fiorito ridge an interesting structure to understand the relation-
ships between travertine ridge growth, geothermal outflow, and
faulting, which have been and are being studied also elsewhere
(e.g., Uysal et al., 2007, 2009; Zentmyer et al., 2008; Zampieri et al.,
2010; Brogi et al., 2012).

2. Geological setting

The Pleistocene Acque Albule basin is located in central Italy, 30 km
to the east of Rome (Fig. 1). The basin is bounded by the Neogene
Fig. 1. (a) Geological map of the Roman area, central Italy, including the Acque Albule basin
map of the Tivoli travertine plateau and related cross-sections (modified from Faccenna et a
ertine plateau. In the A-A′ cross-section, note the southward progradational pattern of the tr
ertine plateau. Note the presence of horizontal to shallow erosional surfaces (S1, S2, S3, and S
the Tivoli travertine plateau. Note, in the travertine benches, the karstic cavities that are us
sional surfaces.
Apennines fold-thrust belt to the north and east (i.e., the Cornicolani
and Lucretili Mountains), by the Pleistocene Colli Albani quiescent vol-
cano to the south, and by the present Tiber valley and the post-orogenic
(Pliocene–Quaternary) Tyrrhenian extensional domain to the west.
The Acque Albule basin pertains to this latter extensional domain. The
Aniene River, which is a tributary of the Tiber River, flows across the
southern portion of the Acque Albule basin toward the southwest. The
central Apennines fold-thrust belt, which developed with an eastward
piggy-back sequence of thrust sheets during late Miocene–Pliocene
time, underwent a post-orogenic extension since about Messinian–
Pliocene times connected with the opening, toward the west, of the
Tyrrhenian back-arc basin (Cosentino and Parotto, 1986; Patacca et al.,
1992; Cavinato and DeCelles, 1999; Billi and Tiberti, 2009). In the Tus-
can, Latium and Campanian margins of the Tyrrhenian basin, reduced
thickness of the lithosphere, active or recently-active volcanoes and ex-
tensional basins, and a high heat flow (average values between 100 and
200 mW/m2; Mongelli and Zito, 1994) are the results of the Neogene–
Quaternary back-arc and post-orogenic extensional processes (Locardi
et al., 1977; Barchi et al., 1998; Jolivet et al., 1998; Chiodini et al.,
2004; Acocella and Funiciello, 2006).

The Acque Albule basin has developed during Pleistocene times
within this post-orogenic framework. The activity of the extensional
faults (mostly NW-striking) along the Tyrrhenian margin of central
Italy was accompanied by the activity of transverse (NE-striking) or
oblique (N-striking) strike–slip faults usually acting as accommoda-
tion structures between adjacent extensional compartments under-
going differential kinematics (e.g., Faccenna et al., 1994a; Acocella
and Funiciello, 2006). One of these strike–slip faults has been active
through the study area with a right-lateral kinematics along a N–S di-
rection since at least the late Pleistocene (Faccenna et al., 1994b) and
it is still seismically active (Gasparini et al., 2002; Frepoli et al., 2010).
The activity of this fault has been accompanied by the activity of
NE-striking normal and transtensional faults, which have caused at
least part of the subsidence of the Acque Albule basin through a
pull-apart mechanism (Faccenna et al., 1994b). The bottom of the
pull-apart basin is constituted by Mesozoic–Cenozoic subsided ma-
rine carbonate bedrock, which outcrops in the adjacent Cornicolani
and Lucretili Mountains. The carbonate bedrock is covered by marine
Pliocene–Pleistocene blue-gray clays and clayey sandstones, which
are exposed on the hills located to the north and northeast of the
Acque Albule basin, and by volcanic products coming from the adja-
cent volcanic districts of Colli Albani and Monti Sabatini. The infilling
deposits of the basin are then mainly composed of late Pleistocene
thermogene travertine, whose average thickness is c. 40-50 m, but
may reach even 85–90 m (Maxia, 1950a; Faccenna et al., 2008;
Fig. 1). The deposition of this thermogene travertine has been
contemporaneous with the final activity of the adjacent Colli Albani
Volcano, which is still classified as quiescent for the emplacement
of degassing-driven maar deposits during Holocene and historical
times (Funiciello et al., 2003; De Benedetti et al., 2008).

In the Acque Albule basin, the Regina and Colonnelle hydrothermal
springs (c. 2000 l/s; Capelli et al., 1987; Fig. 1) and severalminor hydro-
thermal sources (c. 300 l/s; La Vigna et al., 2012, 2013) distributed over
the basin provide evidence for the ongoing hydrothermal activity
(Petitta et al., 2011; Carucci et al., 2012). The fluid discharge in the
Acque Albule basin is, at present, particularly abundant, namely around
2000–3000 l/s. The source of the CaCO3 (and CO2) forming the traver-
tine deposit is principally the subsurface Meso-Cenozoic carbonate suc-
cession (Manfra et al., 1976;Maiorani et al., 1992;Minissale et al., 2002;
Billi et al., 2007). The presence of these carbonate rocks below the
, where the Tivoli travertine plateau grew during late Pleistocene time. (b) Geological
l., 2008). Note the location of the Colle Fiorito ridge to the northwest of the Tivoli trav-
avertine strata. (c) Panoramic photograph from the southern portion of the Tivoli trav-
4) across the travertine benches. (d) Panoramic photograph from the central portion of
ually associated to the erosional surfaces. These cavities normally occur below the ero-
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Fig. 2. Aerial photograph of the Tivoli and Colle Fiorito area (after Google Earth)with isoseismal curves (curves of equal damage or felt seismic intensity) drawn byGasparini et al. (2002)
for the 7th November 2001 earthquake occurred right beneath the Colle Fiorito ridge. Orange dots are earthquake epicenters for the 2001 seismic sequence from Gasparini et al. (2002).

Fig. 3. (a) Digital elevation model (DEM, 20 m resolution; after IGMI). Note the morphological contrast between the Tivoli plateau (Acque Albule basin) and the adjacent
slightly-prominent Colle Fiorito ridge. (b) DEM (20 m resolution, after ESRI) showing a NNE-trending lineation to the west of the Colle Fiorito ridge coinciding with an active
fault documented also in Faccenna et al. (1994b) and Gasparini et al (2002). (c) Perspective view of a DEM (10 m resolution, 10× vertical magnification) showing the Colle Fiorito
ridge. The topographic cross-section is through the middle portion of the Colle Fiorito ridge and was obtained from the DEM. (d) and (e) Lateral panoramic photographic views
(from east toward west) of the Tivoli travertine plateau and Colle Fiorito ridge. See the view points in Fig. 3(c).
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Fig. 4. (a) Aerial photograph (from Bing Maps) of the Colle Fiorito ridge with location of several geological features used in this work (see Supplementary Material 1). Polar dia-
grams (obtained using the Daisy software, Salvini et al., 1999) are Schmidt nets (lower hemisphere) showing poles to bedding (red dots). (b) Aerial photograph of the Colle Fiorito
ridge taken by the Royal Air Force (RAF) in 1943 before the massive development of buildings in the area (compare Fig. 4a and b). Note the presence of presumably-recent cones
and small vents on top of the Colle Fiorito ridge. (c) Detail from (b) showing a crestal fissure along the axial region of the Colle Fiorito ridge.
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nearby Colli Albani volcano is known from geophysical and volcanic ev-
idence (e.g., Funiciello and Parotto, 1978). C- and O-isotope data from
the Tivoli travertine and other calcite deposits in the area show that
the origin of these deposits is through springwaters heatedduring tran-
sit in a high heat-flow area and enriched by a large quantity of CO2 de-
rived mainly from decarbonation of limestones in the substratum, and
also from a deeper source (Chiodini et al., 2012). In this circuit, while
a temperature increase must have reduced the solubility of carbonates
(depending on the temperature), this same solubility must have been
strongly increased by the CO2 enrichment. During their upward rise,
the warm CO2-rich waters must have intercepted the colder shallow
aquifer mainly recharged by meteoric precipitation. The meteoric cold
waters lowered the temperature of the rising deep waters and reset
the oxygen isotopes of the travertine during diagenetic processes
(Manfra et al., 1976; Minissale et al., 2002).

The Tivoli travertine plateau consists of well-organized benches of
diagenetically altered, very compact travertine strata with a sub-
horizontal to gently southward dipping attitude. In particular, the traver-
tine strata are characterized by an obvious (at the hectometric-to-
kilometric scale) progradation pattern (Faccenna et al., 2008; Fig. 1),
with strata progressively steeper and also slightly thicker toward the
south (i.e., progradation direction). The travertine benches are cut and
bounded by evident erosional surfaces (Fig. 1), which are usually accom-
panied by brownish clayey paleosols and karstic features (Faccenna et al.,
2008, 2010). This evidence is symptomatic of episodic lowering of the
water table in the Acque Albule basin during the travertine growth.

The Tivoli travertine plateau has been partly dated through U-series
methods. The oldest age so far known for this travertine deposit is about
116 ka, whereas the youngest one is circa 29 ka (Faccenna et al., 2008).
Also the travertine exposed at the summit of the Colle Fiorito ridge has
been dated; the resulting age (28 + 16 / −15 ka), however, is affected
by a large error due to the detrital Th fraction in the sample (Faccenna et
al., 1994b).

3. Recent seismicity

The Acque Albule basin is characterized by a low seismicity (Frepoli
et al., 2010) although stronger earthquakes from the adjacent
seismically-active domains of the central Apennines and Colli Albani
volcano are usually clearly felt in the basin (e.g., La Vigna et al., 2012,
2013). In the Acque Albule basin, localized or areal subsidence process-
es are also active, possibly in connection with geothermal fluid circula-
tion and sinkhole development (Billi et al., 2007). Gasparini et al. (2002)
studied the recent local seismicity of the Acque Albule basin. In

image of Fig.�4


Fig. 5. Aspect ratio (length vs. width vs. height) diagrams for most known fissure ridge
travertines in the world (after De Filippis and Billi, 2012). Yellow stars indicate aspect
ratios of the Colle Fiorito ridge.
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particular, they studied the seismicity beneath the Colle Fiorito ridge,
providing the following information.

17th century: The oldest information concerning the seismicity
(and similar or possibly related phenomena) of the Acque Albule
basin dates back to the second part of the 17th century about a certain
area of Colle Fiorito, which, at that time, was named Valle Stregata
(Enchanted Valley) due to the fact that the inhabitants used to per-
ceive loud noises from the subsurface.

1972: On the 22nd of May, 1972, at 1:15 a.m. (GMT), a seismic
event was felt by the population of the Acque Albule basin. Some mu-
nicipal officers reported that the event was felt by everybody includ-
ing those sleeping at that time of the night. The event caused cracks
and mild damage to some buildings and no victims or injured people
(MCS maximum intensity = VI in Guidonia located 1 km to the
northeast of Colle Fiorito). A loud underground noise was heard by
several inhabitants.

1989: A seismic sequence particularly felt in the Colle Fiorito area
occurred in January 1989 with four main events between the 11th
and 14th. The affected area was small and narrow with a MCS maxi-
mum intensity = V in the Colle Fiorito area.

1999: On the 27th of June, 1999, at 5:12 a.m. (GMT), an earthquake
was felt in the eastern sector of Montecelio (located 2 km to the north-
east of Colle Fiorito) with aMCSmaximum intensity = IV–V. The event
was not recorded by the national seismic network probably because it
was too shallow and mild.

2001–2002: A seismic sequence occurred in the Acque Albule basin
during 2001–2002. Gasparini et al. (2002) installed a local seismic net-
work during this sequence and studied in detail both the sequence and
somemain events pertaining to this sequence (Fig. 2). The sequence in-
cluded shallow (less than 1.5 km deep), low magnitude (less than Ml
3.0) earthquakes accompanied by rumbles and, in places, strong vibra-
tions of the ground. In particular, the national seismic network recorded
sevenmain events withMl between 2.1 and 2.7 between June 2001 and
January 2002. After processing the data from the local network and
constructing maps with isoseismal curves (Fig. 2), Gasparini et al.
(2002) concluded that the seismic sequence was characterized by
very shallow hypocenters sourced by two main steep causative faults:
a N-striking fault running across themiddle portion of the Acque Albule
basin (i.e., below themain travertine deposit) and a NE-striking fault lo-
cated right beneath the Colle Fiorito area. In particular, results from the
macroseismic investigation (i.e., for the seismic event occurred on 7th
November 2001) show a good correspondence between the isoseismal
lines and the Colle Fiorito ridge (Fig. 2); this result is, however, at least
partially influenced by the presence of several residencies right on top
of the Colle Fiorito ridge (Fig. 2), whereas buildings are substantially ab-
sent over large part of the Tivoli travertine plateau, where several trav-
ertine quarries are active.

2009: It is finally interesting to report that the waves radiated by
the 2009 L'Aquila earthquake (Mw 6.3; Chiarabba et al., 2009) pro-
voked piezometric variations in the Acque Albule basin probably
connected with transient changes of permeability (La Vigna et al.,
2012, 2013). Moreover, in the same occasion, a remarkable transient
increase of degassing from the Acque Albule geothermal springs (in
particular, from the Colonnelle and Regina lakes) was observed. Due
to the gas hazard, in fact, the area of the geothermal springs was
strictly forbidden to people for a period of a few days after the 2009
L'Aquila earthquake, whose epicentral area is located c. 70 km to
the northeast of the Acque Albule basin.

4. Methods and results

4.1. Geomorphology

To constrain themain geomorphological features of the Colle Fiorito
ridge, we used three digital elevation models (DEMs): two models at a
resolution of 20 m provided by ESRI (Environmental Systems Research
Institute; Fig. 3a) and by IGMI (Istituto Geografico Militare Italiano;
Fig. 3b), and a third one at a resolution of 10 m (Fig. 3c). This latter
DEM, in particular, was created by digitizing elevation data from the to-
pographicmaps “Carta Tecnica Regionale” at 1:5.000 scale, produced by
Regione Lazio after aero-photogrammetric surveys carried out in 2002
(Procaccini et al., 2008). Elevation contours, elevation spots, and the hy-
drographic network were collected in a geographic database. All these
data were used as input in the interpolation process to calculate the
resulting DEM. The applied interpolation method is based on the
ANUDEM algorithm (Hutchinson, 1989; Hutchinson and Dowling,
1991), specifically designed to produce hydrologically correct DEM
from cartographic data. This algorithm consists of a discretized thin
plate spline technique (Wahba, 1990)modified to allow the DEM to fol-
low abrupt changes in terrain, such as streams and ridges, by using hy-
drographic data.

We then used four sets of aerial photographs and images (Figs. 2 and
4): one set from the 1943 RAF (Royal Air Force survey, July–November
1943; Fig. 4b), one set from the IGMI (1984–1985), and the two most
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Fig. 6. Geological cross-section through the Colle Fiorito ridge (see the C-C′ track in Fig. 4a). The cross-section is based on stratigraphic well logs available from previous works
(Ventriglia, 1990) and from the local industry of decorative and constructive stones (Supplemental Material 1). Note the difference between the deeply-radicated travertine pla-
teau, to the east, and the shallow shield-like travertine structure of the Colle Fiorito ridge, to the west.
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recent sets derived from satellite imagery of Google Maps and Bing
Maps (Figs. 2 and 4a, respectively). The set from IGMIwas, in particular,
analyzed under stereoscopic view.

In the northwestern side of the Tivoli plateau, southwest of the
Guidonia village, the Colle Fiorito elongate travertine ridge trending
from N–S (southward) to NNE–SSW (northward) emerges from the ad-
jacent plain of the Acque Albule basin (Fig. 3a). The ridge is character-
ized by a crestal flat area and by asymmetrical lateral flanks averagely
striking N–S and dipping eastward and westward between 8 and 25°
(Figs. 3c and4a). At present, this prominent travertine structure ismost-
ly covered by residencies of the Colle Fiorito village built during the
1970s–1980s years (Fig. 4a). Fig. 3(a) and (b) shows the topographic
Fig. 7. (a) Photograph of inclined prograding travertine beds from Outcrop 4 (see loca
gently-inclined thin travertine beds from Outcrop 1 (Fig. 4a) along the eastern side of the Co
crop 1 (Fig. 4a) along the crestal area of the Colle Fiorito ridge. (d) Point of view in the Coll
photographs shown in (a), (b), and (c) represent an ideal E–W cross-section through the cen
beds in the central area, and inclined progressively-prograding travertine beds toward the e
are Schmidt nets (lower hemisphere) showing poles to bedding (red dots).
(elevation) contrast between the flat travertine plateau area (Acque
Albule basin) and the prominent Colle Fiorito ridge, which is bounded
by hill reliefs to the west, and by the mountain reliefs of the Apennines
fold-and-thrust belt to the north. Moreover, Fig. 3(b) shows the linear
topographic expression of the NNE-striking, ESE-dipping transtensional
fault, which bounds the Colle Fiorito ridge toward the west. The mor-
phological contrast between the Colle Fiorito ridge and the adjacent
flat travertine plateau area is particularly evident in the perspective
view of Fig. 3(c), which is characterized by a 10× vertical exaggeration.

The aerial photographs (Fig. 4b, c) taken by the RAF in 1943, when
the ridge was totally uncovered by buildings and residencies, show
fossil, probably-recent thermal springs, gas vents, and small cones
tion in Fig. 4a) along the eastern side of the Colle Fiorito ridge. (b) Photograph of
lle Fiorito ridge. (c) Photograph of thick horizontal aggrading travertine beds from Out-
e Fiorito ridge for the three photographs shown in the preceding figures. (e) The three
tral-eastern margin of the Colle Fiorito ridge, with horizontal and aggrading travertine
astern margin. Polar diagrams (obtained using the Daisy software, Salvini et al., 1999)

image of Fig.�7
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Fig. 8. (a) Exposed bedded and banded travertines in Outcrop 2. Note the T-like pattern of the banded travertine injected across (vertically) and along (horizontally, forming a
sill-like structure) the strata of the bedded travertine. (b) and (c) Details from (a) of the banded travertine injected into the bedded one in Outcrop 2. (d) Banded travertine forming
a sill-like travertine along strata of bedded travertine in Outcrop 3. (e) Exposed bedded travertine in Outcrop 5 with inclined phytoclastic deposits, which are characteristic of
high-energy slope environments. (f) Exposed horizontal bedded travertine with stromatolitic facies (typical of horizontal low-energy environments) in Outcrop 6.
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mainly distributed along the ridge crestal area. The presence of these
geothermal structures was also confirmed by oral accounts provided
by the eldest residents in the area, who were interviewed by us on
this subject. Fig. 4(c), in particular, shows a sinuous crestal fissure
along the central portion of the Colle Fiorito ridge. These crestal fis-
sures are typical of all fissure ridge travertines and represent the sur-
ficial expression of the travertine-feeding conduits (e.g., Altunel and
Hancock, 1996; Uysal et al., 2009; De Filippis and Billi, 2012; De
Filippis et al., 2012). The external perimeter of the Colle Fiorito
ridge has been identified using a stereographic analysis of the study
area on aerial photographs from IGMI and then confirmed by field
surveys and well logs (see Section 4.2 and Supplemental Material
1). On the modern photographs, the area of Colle Fiorito appears as
extensively covered by modern residencies (Figs. 2 and 4a). Both
vents and the axial fissure present in the 1943 RAF photographs are
not visible in the modern sets of photographs. Only one vent is still
slightly visible in Fig. 4(a). In the field, this latter vent appears as a
small hill (3–4 m high) entirely covered by vegetation.
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Fig. 9. Electrical Resistivity Tomography (ERT) cross-section (see cross-section track in Fig. 4a) showing the subsurface structure of the Colle Fiorito ridge. (a) Measured apparent
resistivity pseudo-section. (b) Calculated apparent resistivity pseudo-section. (c) Inverse model resistivity section. (d) Calculated resistivity pseudo-section and, in blue, data
interpretation.
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In a previous paper, two of the authors examined the aspect ratios
(length vs. width vs. height) of most known fissure ridge travertines
in the world and found that these ratios follow roughly linear trends
in bi-logarithmic diagrams (Fig. 5; De Filippis and Billi, 2012). The as-
pect ratios for the Colle Fiorito ridge are well consistent with these
previous results. Fig. 5, in particular, shows that Colle Fiorito is one
of the largest known travertine ridges in the world.

4.2. Geology

To understand the geological and sedimentological setting of the
Colle Fiorito ridge, we analyzed a set of 32 well logs available from
previous works (Ventriglia, 1990) and from the local industry of dec-
orative stone (Fig. 6 and Supplemental Material 1). Through field sur-
veys, we then studied the travertine outcrops over the Colle Fiorito
area and collected a set of travertine samples to provide 14 thin-
sections, which were magnified and analyzed under microscopic
light to better understand the sedimentological features observed at
the outcrop scale.

Well logs were used to better define the perimetral closure of the
Colle Fiorito ridge (Fig. 4) and to construct a cross-section through
the central portion of the ridge (Fig. 6). The cross-section shows
that the Colle Fiorito ridge is a shield-like, thin-skinned structure
less than 15 m high, lying over a shallow substratum consisting of
pre-travertine clays and volcanic tuffs (Plio-Pleistocene). This geolog-
ical setting contrasts markedly with the adjacent travertine plateau,
which is constituted by a flat and thick (up to an average thickness
of c. 45 m) travertine body (Figs. 1 and 6; Faccenna et al., 2008). Mov-
ing toward the northern portion of the ridge, the well log data (Sup-
plemental Material 1) show that the ridge directly overlies the
travertine deposits of the adjacent plateau. Collectively, the well log
data prove that the Colle Fiorito ridge is a thin-skinned travertine de-
posit grown partly over the pre-travertine clays and volcanic tuffs
(Fig. 6) and partly over the adjacent travertine plateau.

Below, we synthetically describe the six main outcrops studied dur-
ing our field surveys (Figs. 7 and 8; see outcrop location in Fig. 4a and
SupplementalMaterial 1). The number of significant outcrops is severe-
ly limited by the overbuilding in the study area and by the vegetation.
The described sedimentological features derive from observations
made at the centimetric–decimetric scale on outcrops and at the
submillimetric scale in thin-sections. In the outcrops, two main types
of travertine are recognized, which are common in most fissure ridge
travertines: the bedded and banded travertines. The bedded travertine
is a porous and stratified deposit that constitutes the bulk and flanks of
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fissure ridges, whereas the banded travertine is a sparry, non-porous,
often subvertical, banded travertine (i.e., with growth bands of different
colors) filling veins injected within the bedded travertine along the in-
terior (axial) part of fissure ridges or sometimes forming sub-horizontal
sill-like structures along pre-existing strata of bedded travertine
(Bargar, 1978; Altunel and Hancock, 1996; Uysal et al., 2007; De
Filippis et al., 2012; Gratier et al., 2012).

Outcrops 1 and 4: Outcrop 1 is a linear outcrop extended from the
crestal portion of the ridge toward its eastern closure. In the crestal por-
tion, a horizontal bedded travertine is exposed. This travertine is charac-
terized by thick strata of stromatolitic facies (sensuD’Argenio and Ferreri
2004), which are typical of low-energy horizontal environments
(Fig. 7c). The thickness of the strata suggests an aggradational pattern
for these travertines. On top of this bedded travertine, the testina traver-
tine is exposed (Fig. 7c). Moving toward the east, the bedded travertine
is gently inclined (by about 10–15°) toward the east and characterized
by thin strata with sedimentological facies (phytoclastic travertines
with lensoid microhermal travertines and subordinate stromatolitic
travertines) typical of a gentle slope environment (D’Argenio and
Ferreri 2004; Fig. 7b). Moving further toward the east (Outcrop 4), an in-
clined (20–25°) bedded travertine (Fig. 7a) is exposed along the periph-
eral closure of the Colle Fiorito ridge. This inclined travertine is
characterized by thick strata with features (phytoclastic travertine) typ-
ical of high-energy inclined slopes (D’Argenio and Ferreri 2004). This lat-
ter travertine (Fig. 7a) is symptomatic of a progradational system toward
the distal portion of the ridge. Collectively, Outcrops 1 and 4 (Fig. 7d)
constitute an ideal cross-section through the central-eastern portion of
the ridge (Fig. 7e) and show a depositional system characterized by
low-energy, horizontal, aggradational travertines in the crestal portion
(Fig. 7c) and by progressively higher-energy, inclined, progradational
travertines in the distal portion of the ridge (Fig. 7a, b). From these sed-
imentological observations, we infer that the inclined attitude of the
travertine strata (Fig. 7a, b) should be substantially a clinostratification,
perhaps only a little bit magnified (steepened) in the post-depositional
time.

Outcrop 2: this outcrop shows subhorizontal bedded travertines
(Fig. 8a) in the crestal portion of the Colle Fiorito ridge. The thickness
of the strata in this outcrop, when compared with the thickness of the
strata along the ridge flank (Fig. 7b), suggests an aggradational pattern.
An interesting feature of Outcrop 2 is a banded travertine forming a
sill-like structure lying along the interstratum surface of the bedded
travertine (Fig. 8a to c). These features (sill-like structures) are very fre-
quent in fissure ridge travertines from all over the world (De Filippis
and Billi, 2012; De Filippis et al., 2012; Gratier et al., 2012). In Outcrop
Fig. 10. Model for the formation of the Colle Fiorito ridge along the edge of the Tivoli trave
abundant fluid discharge in the Acque Albule basin, part of these fluids laterally fed the gro
at the origin of fault (re)activation and opening of related fractures beneath Colle
bicarbonate-rich fluids. In the Colle Fiorito area, an amount of fluids generally lesser than
rather than travertine (lateral) progradation. The depth of the Meso-Cenozoic carbonate be
2, the vertical fracture filled by banded travertine (partly covered by
younger speleothems; Fig. 8a) is probably the vertical conduit from
which the sub-horizontal sill-like structure was fed (e.g., Uysal et al.,
2007, 2009; De Filippis et al., 2012).

Outcrop 3: In an old inactive quarry located at the top of the Colle
Fiorito ridge, a quarried travertine block (i.e., left not in its original
position over the bank of the old quarry) contains a banded travertine
lying along the strata of the bedded travertine in a sill-like manner
(Fig. 8d). The discovery of this structure suggests, together with the
evidence from Outcrop 2, the action of mineralizing processes under
pressure in a closed system so as to force fluid-driven mineralization
along pre-existing bedding surfaces and to uplift the overlying rocks
(Gratier et al., 2012). These processes may have contributed to form
the ridge and to slightly tilt its flanks. The block shown in Fig. 8(d)
has been recently removed and it is not, therefore, available for fur-
ther analyses.

Outcrop 5: this outcrop is a tiny outcrop along the western flank of
the Colle Fiorito ridge, showing a westward inclined (c. 15°) bedded
travertine characterized by phytoclastic facies (Fig. 8e), which are
typical of high energy slope environments.

Outcrop 6: this outcrop (Fig. 8f) is located in the crestal portion of
the Colle Fiorito ridge and includes horizontal thick strata of bedded
travertine mainly characterized by stromatolitic facies, which are typ-
ical of flat, low-energy environments. Also in this case, the thickness
of the strata, when compared with the thickness of the strata along
the ridge flank (Fig. 7b), suggests an aggradational pattern.

4.3. Geophysics

Tounderstand the subsurface structure of the Colle Fiorito ridge, Elec-
trical Resistivity Tomography (ERT) was completed across the ridge. In
particular, we used a High-Resolution ERT (Wenner-Schlumberger
method; e.g., Zohdy, 1989; Badmus and Ayolabi, 2005; Lundberg et al.,
2012), which allowed us to define the subsurface stratal geometries up
to c. 20 m depth. Results of the resistivity survey carried out along the
D–D′ track (see the track in Fig. 4a) are shown in Fig. 9. The travertine
has a characteristic high resistivity, whereas soil, alluvial, and lacustrine
deposits are characterized by a lower resistivity. The interpretation of
the ERT data is shown in Fig. 9(d), where the Colle Fiorito ridge appears
as a gentle antiformal stratified structure affected by subvertical zones of
strata discontinuity. These discontinuities may be subvertical fractures
partly empty or partly filled by low resistivity material such as soil, allu-
vial, and lacustrine sediments. The discontinuities lie below the align-
ment (i.e., crestal zone in Fig. 9d) of thermal springs, gas vents, and
rtine plateau in the Acque Albule basin. In late Pleistocene time, perhaps thanks to an
wth of the Colle Fiorito ridge. The fluid discharge and related pressure were probably
Fiorito, thus producing the necessary pathways for the ascension of geothermal
that in the Acque Albule basin would have produced travertine (vertical) aggradation
drock (CO2 reservoir) below the Acque Albule basin is unknown.
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small cones detected in Fig. 4(b) and could also be partlyfilled by banded
travertine deposits forming subvertical veins or subhorizontal sill-like
structures, as observed in Outcrops 2 and 3 (Fig. 8).

5. Discussion

5.1. Synthesis and interpretation

Our research started from the observation of the marked and ap-
parently enigmatic morphological contrast between the flat traver-
tine plateau of the Acque Albule basin and the prominent Colle
Fiorito ridge along the northwestern margin of the plateau itself
(Figs. 3 and 4). The geological and geophysical data presented in
this paper reveal the surface and subsurface setting of the Colle
Fiorito ridge and help to shed light on its origin. In particular:

(1) the geomorphological and geological evidence (Figs. 3–8)
shows that the Colle Fiorito ridge is an elongate shield-like
structure mainly formed by bedded travertine, which is hori-
zontal in the crestal area and clinostratified along the flanks;

(2) the N–S to NNE–SSW trend of the Colle Fiorito ridge is roughly
parallel to the main tectonic structures in the Acque Albule
basin (Figs. 1 and 3a), thus suggesting a link between these
structures and the development of the Colle Fiorito ridge;

(3) the aerial photographs taken by the RAF in 1943 show a crestal
fissure segment on the summit of Colle Fiorito close to a set
of small cones and other evidence of degassing structures
(Fig. 4b, c);

(4) well logs show that, in the subsurface, the Colle Fiorito ridge is
a thin-skinned structure (i.e., no deep roots) grown partly over
the Plio-Pleistocene clays and volcanic products and partly
over the pre-existing travertine plateau (Fig. 6 and Supple-
mental Material 1);

(5) the geophysical data show that the gentle antiformal travertine
structure of Colle Fiorito is vertically disrupted by discontinuity
zones below the crestal area of the ridge (Fig. 9). These zones
are interpreted as fractures and disruption bands beneath the
small cones detected on the ridge summit (Fig. 4b). This inter-
pretation is supported by the exposure, in Outcrop 2, of a ver-
tical fracture disrupting the bedded travertine (Fig. 8a, b);

(6) Colle Fiorito is located on the hanging wall of a seismic normal
fault, as inferred by the NNE–SSW-trending tectonic lineament
observed in Fig. 3(a) (to the west of Colle Fiorito) and by the
earthquake hypocenters located right beneath Colle Fiorito
(Fig. 2; Gasparini et al., 2002).

Collectively, our data indicate that the Colle Fiorito structure can be
interpreted as a fissure ridge travertine very similar to other fissure
ridge travertines studied, for instance, in Turkey (Uysal et al., 2007,
2009; De Filippis et al., 2012, in press), Italy (Guo and Riding, 1999),
U.S.A. (Bargar, 1978; Chafetz and Folk, 1984; Hancock et al., 1999;
Shipton et al., 2004, 2005; Dockrill and Shipton, 2010; De Filippis and
Billi, 2012; Gratier et al., 2012), and elsewhere (De L'Apparent, 1966;
Pentecost and Viles, 1994; Pentecost, 2005). The growth of these struc-
tures is known to be usually influenced by tectonics,fluid discharge, and
paleoclimate oscillations (Hancock et al., 1999; Uysal et al., 2007, 2009;
Brogi and Capezzuoli, 2009; De Filippis and Billi, 2012; De Filippis et al.,
2012, in press; Gratier et al., 2012). The ridge growth usually occurs
over tens of thousands of years through alternate phases of vertical
growth of bedded travertine (aggradation) and inner injection of band-
ed travertine across and along the pre-existing strata of bedded traver-
tine (Uysal et al., 2007, 2009;De Filippis and Billi, 2012; De Filippis et al.,
2012, in press). Themain distinctive features ofmostfissure ridges hith-
erto studied are as follows: (1) elongate-mound morphology; (2)
shield-like cross-sectional shape (i.e., lack of deep roots); (3) presence
of a crestal fissure or a set of crestal fissures; (4) presence of horizontal
travertine beds in the crestal area and of clinostratified ones along the
flanks; (5) occurrence of banded travertine deposits injected, both
sub-vertically and sub-horizontally, into the pre-existing bedded trav-
ertine forming the bulk of the ridge; (6) travertine growth contempora-
neous with tectonic activity; and (7) in most cases, growth on top of a
normal fault hanging wall. All the above-reported features are valid
and true also for the Colle Fiorito ridge, and support our interpretation
of this structure as a fissure ridge travertine deposit (Fig. 10).Moreover,
the size and aspect ratio of the Colle Fiorito ridge is consistent with
these same parameters for most known fissure ridges in the world
(Fig. 5; De Filippis and Billi, 2012).

5.2. Age of the Colle Fiorito ridge

Active deposition of travertine on the Colle Fiorito ridge probably
ceased during the late Pleistocene, as suggested by travertine dating
from the summit of the ridge (i.e., 28 + 16 / −15 ka; Faccenna et
al., 1994b). In our opinion, however, degassing from the Colle Fiorito
ridge has been active until recent times, as suggested, primarily, by
the presence of small cones on top of the ridge (Fig. 4b) and, second-
arily, by the active seismicity beneath Colle Fiorito (Gasparini et al.,
2002). This seismicity may have been, in fact, promoted by degassing
phenomena and increased fluid pressure. Concerning the cones
detected in Fig. 4b, it is known that travertines are readily erodible
(between about 5 and 15 mm/a; Drysdale and Gillieson, 1997). The
occurrence of these travertines on top of the Colle Fiorito ridge en-
courages us to think that these structures would have formed in re-
cent, perhaps historical times; otherwise, they would have been
completely eroded.

Given the age of the youngest travertine on Colle Fiorito (i.e.,
28 + 16 / −15 ka), one viable hypothesis is that the Colle Fiorito
ridge may have grown along the edge of the Tivoli plateau (Fig. 10)
during the late stages of the plateau growth, when the climax of the
travertine deposition rate was reached in the Acque Albule basin
(i.e., between about 56 and 44 ka; Faccenna et al., 2008). This hypoth-
esis is, however, still very speculative for the large uncertainty that
applies to the above-reported travertine age (i.e., 28 + 16/−15 ka).

5.3. Fluid discharge and ridge growth

As hypothesized above, the increased fluid discharge and pore
pressurewould have activated the system of faults in the Acque Albule
basin and opened new pathways for the fluids to ascend toward the
nascent Colle Fiorito ridge (Fig. 10). Contrary to the Tivoli travertine
plateau, which grewmainly by lateral progradation for the abundance
of mineralizing fluids (Faccenna et al., 2008), our observations show
that the Colle Fiorito ridgemainly grew by vertical aggradation of trav-
ertine beds (Figs. 8 and 9), thus originating themarkedmorphological
contrast between the Colle Fiorito ridge and the adjacent travertine
plateau (Fig. 4). The ‘aggradation’ versus ‘progradation’ styles of trav-
ertine growth imply also different fluid discharges. In travertine sedi-
mentary systems, in fact, a larger fluid discharge is usually at the origin
of lateral progradation (i.e., the travertine can precipitate also far away
from the geothermal springs), whereas a lesser amount of fluids is
usually at the origin of vertical aggradation owing to the fact that
most travertine precipitate immediately close to the geothermal
springs (e.g., De Filippis et al., in press).

In some outcrops from the Colle Fiorito ridge, there is also evidence
of lateral progradation for the bedded travertine (Fig. 8a). This evidence
testifies to the cyclic growth of this structure, as already pointed out for
the adjacent Tivoli plateau (Faccenna et al., 2008) and for other fissure
ridges elsewhere (e.g., De Filippis et al., 2012). The evidence of a lateral
progradation of travertine beds (in the distal part of the Colle Fiorito
ridge; Fig. 8a) involves, in fact, periods of large fluid discharge such
that the travertine precipitation occurred, at least in part, through later-
al progradation far away from the crestal springs. On the contrary,
periods of lesser fluid discharge must have involved the vertical
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aggradation of travertine owing to its preferential precipitation close to
the crestal springs. A partial progradational pattern of travertine beds
has also been observed in the Akköy fissure ridge (Turkey; De Filippis
et al., 2012), whose dimensions are very similar to the ones of the
Colle Fiorito ridge. These two fissure ridges are among the largest struc-
tures of this type ever found on the Earth (De Filippis et al., 2012).

5.4. Possible implications

Previous studies on fissure ridge travertines help us to understand
the significance and possible implications and applications of our dis-
covery in the Colle Fiorito area.

(1) Several studies have established a causal link between the
growth of fissure ridge travertines and active tectonics (Altunel
and Hancock, 1993a, b; Çakır, 1999; Hancock et al., 1999;
Altunel and Karabacak, 2005; Mesci et al., 2008; Brogi and
Capezzuoli, 2009, 2012). In particular, Altunel and Hancock
(1993a, b), studying some fissure ridges from the Denizli basin
(western Turkey), have significantly corroborated the general
idea of Barnes et al. (1978), who found that thermogene traver-
tines are commonly associated with seismically active faults.
Uysal et al. (2007, 2009) have explained the formation of veins
filled by banded travertine within fissure ridges (Turkey) as
being caused by rapid coseismic precipitation of CaCO3 (see
also Kele et al., 2008, 2011). These same vein deposits and their
radiometric ages have been used to infer paleostress directions
and associated deformation rates (Hancock et al., 1999; Altunel
and Karabacak, 2005; Uysal et al., 2007; Mesci et al., 2008).
Some authors, through mapping of fissure ridge travertines,
have noted their preferential distribution in the hanging wall
blocks of active or recently-active normal faults, particularly in
the releasing step-over zones of normal faults. This latter evi-
dence suggests a significant enhancement of geothermal circula-
tion caused by fault-related dilation fracturing, which is
particularly intense in releasing step-over zones (e.g., Çakır,
1999; Hancock et al., 1999; Mesci et al., 2008; Brogi and
Capezzuoli, 2009).

(2) Our discovery of the Colle Fiorito fissure ridge travertine has the
potential to be used in the future for paleoclimate studies. The
deposition of travertine in fissure ridges has been, in fact, dem-
onstrated to be influenced also by paleoclimate oscillations
(Hancock et al., 1999; Uysal et al., 2009; De Filippis et al.,
2012, in press). It has been noted, for instance, that veins of
banded travertine in fissure ridges formed preferentially during
cold/dry climate events when the water table beneath fissure
ridges was depressed, whereas the bulk of fissure ridges (bed-
ded travertine) formed preferentially during warm/wet events
when the water table rose (Uysal et al., 2009; De Filippis et al.,
2012, in press; Kampman et al., 2012). This evidence points
out the importance of groundwater hydrology modulated by
paleoclimate oscillations in the growth of fissure ridges.
Paleoclimate oscillations have been demonstrated to be influen-
tial also in travertine deposits different from fissure ridges (e.g.,
Rihs et al., 2000; Faccenna et al., 2008; De Filippis et al., in press).

(3) Regarding the role of fluids, in particular CO2, in the growth of
fissure ridges, these latter structures are now considered a
valid analog of long-term (tens of thousands of years) CO2

degassing from artificial subsurface reservoirs and also a valid
record of long-term geothermal circulation (e.g., Frery, 2012;
Gratier et al., 2012; Khoury, 2012). For instance, Kampman et
al. (2012), exploring some travertine mounds from central
Utah (USA), have concluded that also geological repositories of
CO2 located far from active structures can experience CO2 leak-
age (see also De Filippis and Billi, 2012), thus claiming that in
situ stress characterization is needed for the prediction of secure
long-term storage. Frery (2012), analyzing travertine deposits
from Utah, estimated the long-term average CO2 degassing
rate (about 1000 kg per year), which may find important appli-
cations in the modern CO2 sequestration industry. To better un-
derstand the potential implications of our results on the CO2

subsurface storage, we here briefly report what is known from
previous papers about the Tivoli travertine feeding circuit
(Manfra et al., 1976; Minissale et al., 2002; De Filippis et al., in
press). Geochemical studies of the Tivoli travertine demonstrat-
ed that this deposit substantially derived from meteoric waters
that were, at depth, heated and CO2 enriched probably for the
effect of the nearby active Colli Albani volcano. The CO2 enrich-
ment must have counteracted and exceeded the effect of tem-
perature rise, thus leading the CO2-rich meteoric waters to
chemically weather the bedrock of Meso-Cenozoic carbonates.
Afterward, while ascending toward the surface, the carbonate-
rich warm waters were cooled in intercepting the shallow and
colder aquifers. Eventually, when the fluid reached the surface,
the decrease of pressure led to CO2 degassing and therefore to
travertine precipitation (Fig. 10).

(4) Eventually, it is interesting to know that the banded travertine
typical of the inner portion of most fissure ridges has been
often considered a precious decorative stone (e.g., Pamukkale
in Turkey and Bridgeport in California). For instance, the banded
travertine from the Bridgeport fissure ridges (De Filippis and
Billi, 2012) has been used to decorate important buildings such
as the rotunda of the City Hall in San Francisco, California.

6. Conclusions

Starting from a marked morphological contrast between adjacent
deposits of travertine in the Acque Albule basin, we have discovered a
hitherto unknown fissure ridge travertine deposit in the Colle Fiorito
area. The contrasting morphology between the travertine deposits
forming the Tivoli plateau and the adjacent Colle Fiorito ridge hides
different subsurface architectures: basin-filling deeply-rooted versus
surficial shallow deposits, respectively. We explain these different
morphologies with different deposition mechanisms and styles,
namely, aggradation in the Colle Fiorito ridge versus progradation in
the Tivoli plateau. With this study, we point out the importance of
thermogene travertines and their morphology in constraining and
understanding present and past geothermal systems, in terms of the
location of the feeding conduits for hydrothermal fluid flow, age of
faulting, fluid discharge, and also surface hazardous processes (e.g.,
Brogi et al., 2012; Nishikawa et al., 2012).
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